
temperature distribution. However, the cited results pertain to that initial stage of the 
process in which the heating is still small. According to formula (2.5), the temperature 
difference across the cross section amounts approximately to 2 K; with an initial tempera- 
ture of 18 K the relationship between the properties and temperature in this case is not 
apparent [i]. 
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THE DYNAMICS OF AIR FLOW IN THE PRESENCE OF AN ENERGY PULSE 

IN THE SPHERICAL REGION, WITH PROVISION MADE 

FOR VIBRATIONAL-TRANSLATIONAL NONEQUILIBRIUM 

A. Kh. Mnatsakanyan, G. V. Naidis, and S. V. Rumyantsev UDC 533.9 

Numerous papers have been devoted to questions dealing with the dynamics of a gas in 
the presence of energy sources. We are thoroughly familiar with solutions to problems deal- 
ing with a powerful point explosion and with a spot explosion in which consideration is given 
to the counterpressure in an ideal gas with a constant adiabatic exponent for cases of plane, 
cylindrical, and spherical symmetry [i, 2]. Such explosions are similar to one another, 
if the variables are normalized to the corresponding parameters p~, p~ of the unperturbed 
gas, as well as to the characteristic dimensions and times of attenuation for the explosion 
wave, i.e., r 0 = (E0/p~) I/n, c 0 = r0(p~/p~) I/2 (E 0 is the energy released per unit area or 
length, or the total energy of the explosion, n = i, 2, 3 for plane, cylindrical, and sphe- 
rical symmetry). The solution from point explosion theory (PET) frequently provides a good 
relationship for the magnitudes of the jumps in the gasdynamic variables at the front of 
the shock wave (SW) at great distances from the center of the explosion (when r m R 0, R 0 
is the radius of the energy-release zone). However, in order to examine the distribution 
of the gasdynamic quantities over small periods of time, as well as to examine the finite 
distribution of temperature in the region of energy release after equalization of the pres- 
sure it is necessary to take into consideration the finiteness of the dimensions of the energy-i 
release region and the time over which the energy contribution is effective. 

The release of energy in a gas frequens comes about in nonequilibrium fashion. Thus, 
in a pulsed electric discharge in a molecular gas the greater portion of the released energy 
is stored in the vibrational degrees of molecular freedom, which leads to a significant di- 
vergence of the vibrational energy from equilibrium. In this case, in our analysis of the 
gasdynamic phenomena, we have to examine the kinetics of the exchange of energies between 
the internal and translational degrees of freedom for the molecules. The gasdynamics of 
nonequilibrium excited nitrogen was examined for instances of plane and cylindrical symmetry 
in [3, 4]. The duration of the excitation pulse was assumed, in this case, to be infinitely 
small. 

The gasdynamic phenomena in the nonequilibrium excitation of the spherical region in 
air is examined in this study for various ratios of the time T of the energy contribution 
and the characteristic gasdynamic and relaxation times. 
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With a given initial gas temperature T~, a specific (per unit mass) applied energy Q, 
and its fraction $ stored in the vibrational degrees of freedom, the nature of the gas flow 
is determined by two dimensionless quantities, the ratios of the above-indicated three char- 
acteristic times. Since the relaxation time T V - p -1, and the gasdynamic time ~, - R 0 (to 
the radius of the energy-release zone), the similarity parameters in this problem are P~0 
and R0/~. The calculations were carried out for p~R 0 = i03, i04, and i0 s Pa'm, R0/~ = i03 
and 2"10 ~ m/sec for T~ = 300K, Q = i.i'i06 J/kg (which corresponds to -0.33 eV/molecule), 

= 0.77. The quantities Q and ~ are typical for the conditions of excitation for the air 
by means of a pulsed high-frequency charge [5]. 

The system of one-dimensional nonstationary gasdynamics equations in Lagrange mass vari- 
ables for spherical-symmetric flow was solved numerically for the times t > 0: 

av _ r20p Or Or s 
a t  -E~ ' 3 - [  = v '  ~ = ' a s  " 

N 2 Oo ~p a~ o (r~v)+ Q O(~-- t )  O(s o - s ) ,  e = e v  +ev" + 0-7----- --P~F -~ ?--i" 

(1) 

Here v is the velocity; p, pressure; e, total specific internal energy (per unit mass of the 
gas); s, the Lagrange mass variable, equal to the mass of gas per unit solid angle (the value 
of s = so corre@ponds to the initial distance r = R0); y, the adiabatic exponent (for air 7 = 
1.4); q, the specific volume; eV N2 and eV 02, respectively, the specific vibrational energies 
of nitrogen and oxygen; 8(x) = 0 when x < 0 and 1 for the case in which x e O. System (i) 
was enhanced with the relaxation equation for the vibrational energy of N 2 (eV U2 was assumed 
at each instant to be equal to its equilibrium value, determined by the translational tempera- 
ture of the gas) 

~ - ~vo + o (~  - t) o (So - s)  ( 2 )  ot ~w 

(~y0 N2 i s  t h e  e q u i l i b r i u m  v a l u e  o f  uvN2). The t ime  ~V o f  t h e  v i b r a t i o n a l  r e l a x a t i o n  of  N 2 

i s  d e t e r m i n e d  from an e x p r e s s i o n  a p p r o x i m a t i n g  t h e  c a l c u l a t i o n  r e s u l t s  from [6] :  

(Tvnm)-I = [ AI~H~~ A2 ] ( i - -  exp( - -  ~NJT))  + Aaq~a (ma/sec), (3) 
t-0xp ( -    0o/r) + exv ( -   o2tr) 

where n m i s  t h e  t o t a l  m o l e c u l e  c o n c e n t r a t i o n ;  r = nH20/n m i s  t h e  molar  f r a c t i o n  o f  t h e  

w a t e r  vapor s  (assumed in  t h e  c a l c u l a t i o n s  t o  be e q u a l  t o  0 . 0 1 ) ;  mH20, m02, mN2 a r e  t h e  v i b r a -  

t i o n a l  qua n t a  o f  H20 ( t h e  v i b r a t i o n a l  mode v2) ,  02 and N 2 in  K; A 1 = 1 . 5 " i 0  -zs  exp ( - - 9 6 . 1 /  
T l l 2 ) ,  A 2 = 1 . 1 " 1 0 - 2 4 T a / 2 - e x p ( - 1 5 6 / T 1 / 2 ) ,  A 3 = 3 .1 -10-28T2;  qN 2 i s  t h e  a v e r a g e  number o f  

v i b r a t i o n a l  quan t a  pe r  s i n g l e  n i t r o g e n  m o l e c u l e .  The te rms  in  t h e  b r a c k e t s  in  (3) c o r r e s p o n d  
to  t h e  e x t i n c t i o n  of  t h e  N 2 v i b r a t i o n s  by 02 and H20 m o l e c u l e s .  The l a s t  t e rm in  (3) makes 
p r o v i s i o n  f o r  t h e  e f f e c t s  o f  anharmony.  

System of  e q u a t i o n s  ( 1 ) ,  (2) was s o l v e d  n u m e r i c a l l y  by means o f  a d i f f e r e n c e  method 
with the aid of an implicitly totally conservative difference scheme, described in detail 
in [7], involving the use of a grid uniform with respect to the Euler coordinate. The cal- 
culation of the SW is accomplished in direct fashion, by using the Neumann artificial vis- 
cosity [7]. 

The calculated pressure profiles for the case of short pumping pulses (R0/T = 2"104 
m/sec) are shown in Fig. i. Figure la shows the results corresponding to p~R 0 = 10 s Pa'm 
for the instants of time t/~, = 0.21, 0.42, 0.62, 0.83, 0.92, 1.09, and 1.32 (lines 1-7, 
�9 , = R0/a, a is the speed of sound in the unperturbed gas). In this case both the duration 
of the pulse and the time of the vibrational relaxation of N 2 are smaller than the gasdynamic 
time T,, then the transition of all the energy applied to the translational degrees proceeds 
isochorically and the pattern of the flow turns out to be analogous to that calculated in 
[8], where we find an examination of the process of the disintegration of the spherical re- 
gion with elevated pressure and temperature. The SW and the refraction waves begin to 
propagate from the boundaries of the region of energy release. On reaching the center of 
the sphere, the rarefaction wave sharply reduces both pressure and density there, so that 
a significant pressure gradient is developed from the periphery to the center. Under the 
action of this pressure gradient the gas particles that are not overly close to the front 
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of the SW, moving initially from the center, are decelerated and at some instant of time 
their velocity changes sign. SW are formed, converging on the center. Collapsing in the 
direction of the center of the sphere and being reflected from that center, the wave markedly 
heats the central region. The reflected wave forms a second front in the explosion wave, 
which is thus converted into an N-shaped wave (the so-called N-wave). The characteristic 
dimensions between the pressure discontinuities in the N-wave at the instant of its formation 
amounts to -2R 0 and grows only weakly over time. 

Figure ib shows the pressure profiles for the case in which p~R 0 = 103 Pa'm for the 
times t/T, = 0.35, 0.52, 0.62, and 1.74 (lines 1-4). In this case ~V >> T,, as a result of 
which the N-wave forms only due to the direct heating; the vibrational relaxation occurs 
isobarically. The pressure profiles for the intermediate value of p~R 0 = 104 Pa'm are 
shown in Fig. ic for t/z, = 0.035, 0.17, 0.35, 0.49, 0.62, 0.83, and 1.74 (lines 1-7). Here 
the disintegration proceeds simultaneously with the relaxation of the vibrations in N 2. The 
rarefaction wave propagates within the energy-release region simultaneously with the rise 
in pressure in the central region. We can see that unlike the above-cited cases of SW forma- 
tion we have a nonmonotonic pressure profile in the initial stage, and this profile, conse- 
quently, changes into an ordinary N-shaped profile with a monotonic drop in pressure behind 
the front. 

Calculations were also carried out for an extended period of energy input with R0/~ = 
103 m/sec (for T,/~ = 2.9). The basic outlines of the disintegration process are analogous 
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to the case with small t examined above. The parameters of the resulting SW coincide approxi- 
mately, as does the relationship between the SW and distance. However, with a prolonged 
pumping pulse no return SW is formed and therefore no strongly heated region near the center 
is formed. As can be seen in Fig. 2, which shows the pressure profiles for p~R 0 = 104 Pa'm, 
R0/t = i0 ~ m/sec for t/t, = 0.i0, 0.31, 0.52, 0.62, 0.94, 1.15, 1.46, and 2.6 (lines 1-8), 
the formation of the leading SW does not occur instantaneously (unlike the case of rapid 
pumping, see Fig. ic) and concludes approximately at the instant t/t, = 1.5. The difference 
between the versions with slow and rapid pumping is also illustrated in Fig. 3, in which 
we find the time relationships of pressure at the center of the energy-release region for 
regimes corresponding to Fig. ic and Fig. 2 (lines 1 and 2), expressed in units of PET (see 
above). We see that with a short pumping pulse the relationship is more pronounced in nature. 
After a rapid drop in pressure, resulting from the arrival of rarefaction wave, we have a 
burst from the return SW, which is then followed by a constant external pressure. 

The final profiles of temperature and density (after the pressure has been made equal 
to the external pressure in the energy-release region) for the thermal nonuniformity were 
found by recalculating the parameters of the region, after the second front of the N-wave has 
departed from that region, by means of the following formulas: 

(! )13 
T 1 (s) = T (s) ( p ~ / p  (s))l-1/v ~,1 (s) = ~l (s) (p (s) /p~)l /~,  r 1 ( s ) =  3 ~h (s) ds , 

where s is the Lagrange coordinate; r1(s) , the finite distance from the center to the gas 
particle with coordinate s; p(s), T(s), N(s), the initial profiles of pressure, temperature, 
and specific volume. These formulas correspond to the adiabatic expansion or compression 
of the gas particle with the parameters p(s), q(s) to the pressures p~ [9]. 

Figure 4 shows the profiles of the finite temperature for the conditions corresponding 
to Fig. la-c and Fig. 2 (lines 1-4). We can see that the region of strongly heated gas near 
the center exists only in the case of rapid energy input. Here we also find the profiles 
of the finite temperature for characteristic energy-release regimes: isobaric and isochoric, 
with subsequent adiabatic expansion (lines 5 and 6). It is easy to show that the finite 
temperature in the isobaric regime is expressed by TI/T~ = 1 + (y - I)Q/~yRT~), while in 
the case of the isochoric-adiabatic regime TI/T~ = (i + (y - I)Q/(RT~))I/Y (R is the gas 
constant, and for air R = 289 J/kg/K). The finite dimension of the energy-release region 
for these cases is obviously R l = R0(TI/T~) I/3. We can see from Fig. 4 that the finite tem- 
perature profiles for p~R 0 = i0 ~ and 105 Pa'm are close to the profile for the isochoric- 
adiabatic regime of energy release, while for p~R 0 = 103 Pa'm they are close to the rela- 
tionships for the isobaric regime of energy release. 

The calculations which we have carried out have demonstrated the significant influence 
of nonequilibrium in energy release (with p=R 0 ~ i0 ~ Pa'm) and the duration of pumping on 
the nature of the gas flow. We have determined the intensity of the formed SW as a function 
of the distance to the center of the region of energy release in the case of typical values 
for the specific energy input under conditions of a pulsed electric discharge. 
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THE FORMATION OF SHOCK WAVES WITH AN EXPLOSIVE PROFILE 

IN A SHOCK TUBE 

M. K. Berezkina, I. V. Smirnov, and M. P. Syshchikova UDC 533.6.011.72:534.222.2 

A plane shock wave (SW) with a variable pressure profile behind the front can be pro- 
duced in a shock tube of constant cross section, with a diaphragm, at the point at which 
the SW front overtakes the rarefaction wave (RW), reflected from the end of a high-pressure 
chamber (HPC). 

Based on a numerical model of the flow which occurs in the explosion of a layer which 
can be represented as a flow that is achieved in a shock tube in the case of the instan- 
taneous removal of the diaphragm, it has been demonstrated in [i] that there exists such 
values of the determining parameters that the pressure at the front of the SW at the instant 
at which the head of the RW is overtaken is close to the pressure at the front of the SW 
in the case of a point plane explosion. Further changes in the pressure at the front of 
the SW are also close to the relationship between the pressure at the front of the SW and 
the distance for the point explosion. Given other values for the determining parameters, 
the pressure at the front of the SW at the instant of overtaking the RW is smaller than the 
pressure of the point explosion and approach to the quantitative relationship governing the 
point explosion occurs at a distance exceeding the distance required to overtake the other 
wave. 

At the present time the model of the point explosion has been studied more thoroughly 
[2] and in many cases provides an excellent description of the problem of real explosions. 
The interrelationship of the parameters of a SW formed in a shock tube after the RW has been 
overtaken with the parameters of the SW in the case of a point explosion, such as observed 
in numerical modeling [i], is deserving of attention. We have the possibility of using in- 
stallations of this kind to model the processes of interaction between bodies and the waves 
from an explosion. 
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